DATA SHEET

DN515

HEATER BLOCK

SUBMINIATURE PROPORTIONALLY CONTROLLED HEATER

GENERAL DESCRIPTION

The DN515 is a subminiature proportionally controlled heater whose temperature can be programmed with a single external resistor. This device is ideally suited for regulating the temperature of sensitive electronic components such as microwave filters and crystal oscillators. The DN515 is in a ceramic package and can supply up to 28 watts of power from an unregulated 28 Volt power supply.

DIAGRAM VDD TEMP. SENSOR CONTROL CIRCUIT SET 78 TEMP. 2 TEMP. 2 TEMP. 3 TEMP. 2 TEMP. 3 TEMP. 2 TEMP. 3 TEMP.

FEATURES

- · BERYLLIA BASE FOR GOOD THERMAL CONDUCTION
- REGULATION TEMPERATURE FROM 5°C ABOVE AMBIENT TO 100°C
- 28 T0 50 VOLT OPERATION
- ELECTRICALLY ISOLATED FROM THE CASE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	VDD	35	VDC
Reverse Voltage (Pin 1 to Pin 2)	VR	-50	VDC
Power Dissipation	Рв	35	Watts
Operating Temperature	Тмах	120	°C
Storage Temperature	Тмім	-65 to +150	°C

Characteristic	Symbol	Min	Max	Unit
Supply Voltage (Pin 1 to Pin 2)	VDD	+20	+35	Vdc
Steady State Supply Current @ Vpp = +28 Vdc	ls	0.015	1.0	Adc
Temperature Variation over Operating Voltage	ΔΤν		2	°C
Temperature Variation with Load	ΔΤι		10	°C
Control Temperature Range	Тс	Ta +5	100	°C
Control Resistor Value Pin 3 to Pin 4 (See Chart)	Rs	0		Ohm
Maximum Control Temperature when Rs= 0 Ohms	Тмах		120	°C
Turn on power at start-up @ Vpp = +28 Vdc	Рв	25	28	Watts

Heater Temperature (Tc) vs. TemperatureSet Resistor (Rs)

T °C	RS KΩ	T ℃	RS KΩ	T °C	RS KΩ	T ℃	RS KΩ
0	360.1	29	79.6	58	20.2	87	4.6
1	340.6	30	75.8	59	19.3	88	4.4
2	322.3	31	72.2	60	18.4	89	4.1
3	305.0	32	68.8	61	17.5	90	3.9
4	288.7	33	65.5	62	16.7	91	3.6
5	273.4	34	62.5	63	15.9	92	3.4
6	259.0	35	59.5	64	15.2	93	3.2
7	245.4	36	56.8	65	14.5	94	3.0
8	232.5	37	54.1	66	13.8	95	2.8
9	220.4	38	51.6	67	13.2	96	2.6
10	209.0	39	49.2	68	12.5	97	2.4
11	198.3	40	46.9	69	11.9	98	2.2
12	188.1	41	44.8	70	11.4	99	2.0
13	178.5	42	42.7	71	10.8	100	1.80
14	169.4	43	40.7	72	10.3	101	1.68
15	160.8	44	38.9	73	9.8	102	1.52
16	152.7	45	37.1	74	9.3	103	1.37
17	145.1	46	35.4	75	8.9	104	1.23
18	137.8	47	33.8	76	8.4	105	1.09
19	131.0	48	32.3	77	8.0	106	0.95
20	124.5	49	30.8	78	7.6	107	0.82
21	118.3	50	29.4	79	7.2	108	0.70
22	112.5	51	28.1	80	6.8	109	0.58
23	107.0	52	26.8	81	6.5	110	0.46
24	101.8	53	25.5	82	6.1	111	0.35
25	96.9	54	24.4	83	5.8	112	0.25
26	92.2	55	23.2	84	5.5	113	0.14
27	87.8	56	22.2	85	5.2	114	0.04
28	83.6	57	21.2	86	4.9		

Typical Base Temperature Change vs. Power Dissipation

NOTES:

- 1. Optimum heat transfer between the DN515 and the device being heated, occurs when a thermal compound, such as Dow Corning 340, is applied to the mounting surface of 2. Make sure that the surface of the the heater.
- 2. All DN515 heaters are tested for gross leaks with 3M™ FC-40 Fluorinert™ at 125°C.
- 3. Special environmental testing is available on request.

Max. Start-up Current vs. Supply Voltage

Max. Heater Power Available vs. Supply Voltage

MECHANICAL DIMENSIONS

Mounting the DN515 Heater

Mounting Tips

- 1. Make sure that the surface of the device that the heater is mounted to is flat.
- heater and devices being heated is clean. Any particles between the surfaces will cause poor heat transfer and can cause potential breakage of the heater substrate.
- 3. Tighten screws to one inch pound of torque. Alternate tighting of screws to quarantee that the heater is flat.

Completed Assembly

12-2011

torque.